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First-order wetting of rough substrates and quantum unbinding
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Replica and functional renormalization group methods show that, with short-range substrate forces or in
strong fluctuation regimes, wetting of a self-affine rough wall in two dimensions turns first order as soon as the
wall roughness exponent exceeds the anisotropy index of bulk interface fluctuations. Different thresholds apply
with long-range forces in mean field regimes. For bond-disordered bulk, fixed point stability suggests similar
results, which ultimately rely on basic properties of quantum bound states with asymptotically power-law
repulsive potentials.@S1063-651X~98!15309-6#

PACS number~s!: 68.45.Gd, 05.70.Fh, 64.60.Ak, 82.65.Dp
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Wetting transitions occur when, e.g., an interface sepa
ing two coexisting phases unbinds from an attractive s
strate, as the wetting temperatureTw is approached from
below. In recent literature, much space has been devote
the effects of different types of disorder on the nature a
universality of such transitions@1–4#. This is motivated both
by the presence of impurities in actual experiments, and
the expectation that disorder modifies critical behavi
Many studies concentrated on impurities in the bulk, or
the surface of a smooth substrate. Another type of disord
that due to the roughness of the wall delimiting the substr
This rather frequent geometrical disorder was discussed
pecially in connection with measurements of nitrogen
sorption on flash deposited silver@5–8#.

Substrate roughness describable by self-affine geomet
often realized and most interesting, from both a fundame
and a physical point of view. Indeed, a wall whose avera
transverse fluctuationWL increases as a power of the long
tudinal sample sizeL (WL}Lzw,0,zw,1), has a random
geometry characterized globally by a single roughness ex
nentzw . Moreover, whether their fluctuations are controll
by temperature or by disorder, bulk interfaces behave as
affine objects, with appropriate exponentsz0 @1,4# describing
their transverse fluctuations just aszw does in the case o
WL . Thus, when such substrates are considered, a d
competition between wall and interface roughnesses ma
anticipated in wetting phenomena.

In the present paper we show exactly in two-dimensio
~2D! that, as soon as the wall wins~i.e., for zw.z0 with
short-range substrate potentials!, the above competition is
resolved in an unusual, drastic change of the wetting tra
tion, from continuous to first order. In other terms, the av
age substrate-interface distance diverges discontinuous
Tw , rather than as a negative power ofTw2T. We deter-
mine exact roughness thresholds for first-order wetting a
in other regimes with the substrate exerting long-ran
forces~e.g., van der Waals! on the interface and discuss,
perturbative level, cases with bond disorder in the bulk
change from continuous to discontinuous wetting is in fac
quite surprising and unexpected phenomenon, especial
2D. As a rule, with short-range forces, first-order wetti
PRE 581063-651X/98/58~3!/2979~4!/$15.00
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never occurs in 2D, except in special andad hoclimit situ-
ations @9#. Disorder generally acts in the opposite sense
turning into second-order discontinuous transitions@1#. In all
cases the mechanism leading to first-order wetting at la
zw can be traced back to some basic properties of quan
bound states of a particle in a potential@10#.

In 2D, a self-affine wall can be described by a rando
function hw(x) ~Fig. 1!, with probability distribution@7#

Pw@hw#}expF2E dx
Kw

2
~]bhw /]xb!2G ~1!

such thatuhw(x)2hw(x8)u}ux2x8uzw, with zw5b21/2 and
the overbar indicating the quenched average with respec

FIG. 1. Inset: sketch of the geometry of wall~continuous! and
interface~dashed!. Main: probability distribution ofh, from a sam-
pling of 500 wall configurations of 100 000 longitudinal steps.
2979 © 1998 The American Physical Society
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2980 PRE 58ATTILIO L. STELLA AND GIOVANNI SARTONI
Eq. ~1! @11#. In the presence of bulk disorder, the interfa
Hamiltonian can be put in the form

bH@h,hw ,V#5E dxFK

2
~]h/]x!2

1U„h~x!2hw~x!…1V„x,h~x!…G ~2!

where V is a Gaussian random potential@V̄
50, V(x,h)V(x8,h8)5Dd(x2x8)d(h2h8)#, andU is the
potential due to the substrate.K is the interfacial stiffness. If
the wall is attractive, but impenetrable,U(y)5` for y<0,
and a minimum ofU at somey.0 allows us to pin the
interface. With long-range forces, U(y);u/ys21

1v/ys (v.0), for largey @4#.
The disorder due tohw andV in Eq. ~2! makes the parti-

tion Z@hw ,V#5*Dh exp(2bH) a stochastic variable. Thus
we introduce replicas@12# and evaluate

Zn5E DVE DhwPv@V#Pw@hw#E )
a51

n

Dha

3exp~2bH@ha ,hw ,V# ! ~3!

where ln(Pv)5const2(1/2D)* dx dh V(x,h)2. Integration
overDV is easily performed and allows to interpretha(x) as
world lines (x corresponding to time! of n quantum particles
interacting via attractive two-bodyd potentials. Thus, in Eq
~3! we are left with integrations overDhw andDha , and an
effective Hamiltonian:

bH@ha ,hw#5E dxS Kw

2
~]bhw /]xb!2

1(
a

FK

2
~]ha /]x!21

K8

2
~]hw /]x!2

1C~]ha /]x!~]hw /]x!1U~ha!G
1D (

aÞb
d~ha2hb! D . ~4!

The logarithm ofPw is now included inbH and the cou-
plings K8 and C arise from the replacementha→ha1hw
~initially, of course,K85C5K). A functional renormaliza-
tion group~RG! @1,7# treatment can be performed exactly u
to first order inU and D. By summing up exp(2bH) over
Fourier modesh̃a(k) and h̃w(k) with L/b,k,L, after the
rescalingsx→bx, ha→bzha and hw→bzwhw , one obtains
the following RG flow equations (b511dl):

d ln~U !

dl
511zh

U8

U
1V

U9

U
,

d ln~K !

dl
52z21,
d ln~K8!

dl
52zw21,

~5!

d ln~C!

dl
5z1zw21,

d ln~Kw!

dl
5122b12zw50,

d ln~D!

dl
512z,

whereV is a suitable function ofK, Kw , C and the cutoffL
@7#, andh stands for a genericha .

We first discussD50. With zw,1/2 and ordered bulk,
for z5z051/2 @1,4#, there exists a fixed point~FP! of Eqs.
~5!, with respect to whichK8 and C are irrelevant
@d ln(K)/dl50, while, e.g.,d ln(K8)/dl,0]. Thus, substrate
fluctuations decouple from the problem. With short-range
with long-range forces such thatz051/2.2/(s11)5z*
$strong fluctuation~SF! regime@4#%, the FP behavior ofU at
largeh is within the control of a first-order cumulant expa
sion and turns out to beU}h2t(z0), (t(z0)52(12z0)/z0
52) @4,7,13#. This long distance behavior should in fact a
ply to all of the FPU ’s necessary to describe the wettin
transition in such conditions. These FP’s are in general th
one describing pinned interface situations, one for the
regime with unbound interface, and one, unstable, at the
derline between the domains of attraction of the previo
two, describing the transition point behavior. In view of th
decoupling of substrate fluctuations, the wetting transit
controlled by these FP’s, whoseU ’s we can not determine a
finite h, is expected to be continuous, with exponents id
tical to those valid for the flat wall, which are known exact
@1,14#. In the case of short-range forces, numerical evide
of second-order wetting with such exponents has been
cently obtained for low enoughzw by extensive transfer ma
trix calculations@8#.

The FP’s forzw.1/2 have to be found atT50, by setting
z5zw in Eqs. ~5!. Indeed, now, choosing againz51/2, pa-
rameters likeK8 and C would grow to infinity whileK re-
mains fixed. Surface roughness is clearly relevant now.
der a rescalingb, a T50 fixed point is approached asbH
}by(bH)* with (bH)* finite andy.0, whenb→`. Such
FP’s are expected in situations when quenched disorder~due
to the wall here! controls the physics@7#. At the T50 FP’s
with z5zw , K, K8, andC are all growing to infinity at the
same rate $e.g., K( l );K* exp@(2zw21)l#%, and U( l )
;U* (h)exp@(2zw21)l#. U* obeys an equation like the firs
of Eqs. ~5!, with the constant term replaced by 2(12zw),
andzw multiplying the second term on the right-hand side
place ofz. Thus, the discussion of the asymptotic behav
of U* follows lines similar to those forU in the casezw
,1/2 @7#. In particular, with short-range forces or in SF r
gime, we get nowU* (h)}h2t(zw), @t(zw),2#. Such be-
havior ofU* holds also in MF regime (z* .z051/2 @4#!, as
soon aszw.z* .

This asymptotic behavior ofU* and the connection be
tween path integral and quantum mechanics are the ke
demonstrate first-order wetting. Indeed, the transition or
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is revealed by the way in whicĥh& diverges to infinity.
Consistently with Eqs.~5!, upon approaching aT50 FP with
zw.z0 , or zw.z* in the MF regime, we must defineKw*
such thatKw( l )5Kw* exp@2zw21)l]5const. Thus, in the FP
action (bH)* we are left withKw* 50, asl→`. By shifting
back integration variables in this action (ha→ha2hw), the
terms inK8* andC* disappear and the calculation ofZn can
be easily converted into that of the ground state energy
quantum problem in 1D, withn11 particles and Hamil-
tonianH5(a@pa

2/(2K* )1U(ha2hw)#. In this problem the
particle with coordinatehw has an infinite mass. This circum
stance allows to get the ground state wave function ofH
exactly in the form)aC(ha2hw), with C satisfying the
one-particle Schro¨dinger equation:

2
1

2K*
]2C/]h21U* C5eC. ~6!

^ha2hw& is proportional to the expectation value,^h&C @15#,
of h in the ground stateC(h) of Eq. ~6!. We concluded
above that, at largeh and forzw.1/2 ~or zw.z* .1/2 with
long range forces in the MF regime!, the possibleU* (h),
however, behaving at finiteh, are repulsive and decay a
ymptotically to zero with a powert(zw),2 of h. The FP
U* at the wetting transition must have such a shape to
long to the borderline class between potentials with bou
ground state ande,0, and potentials for which all state
havee.0 and^h&C5`. These two latter types of potentia
characterize dry and wet regimes, respectively. Indepen
of the details ofU* (h) at shorth, a solution of Eq.~6! with
e50 has a remarkable property fort,2 @10#. Indeed, ane
50 eigenstate necessarily behaves asC(h)}exp(2ahs), at
largeh, with s512(t/2).0. This means that, fore50, a
repulsive potential decaying slower thanh22 creates a too
strong barrier at large distances to allow interface delocal
tion. Thus, the ground stateC for U* representing the tran
sition FP~i.e., a FP potential in the borderline class! must be
bound, with^h&C,`. This implies that, right at the wetting
transition,^h&,`, while ^h&5` as soon as the wet phase
accessed. First-order wetting is thus proved as soon azw
.1/2 ~short range orz* ,1/2), or zw.z* .1/2.

A recent numerical study of a 2D model with rough su
strate exerting short-range forces, gave evidence in sup
of first-order wetting forzw sufficiently larger than 1/2@8#.
In order to get a more direct manifestation of the mec
nisms implied by Eq.~6!, we performed transfer matrix ca
culations for a model on square lattice with both the wall a
interface represented by directed paths, as described in
@16#. Figure 1 reports numerical results for the probabil
distribution of h. Data are taken just below the depinnin
temperature forzw52/3 @t(2/3)51#. The dotted curve has
a behavior}exp(2ax1/2), of the form expected right a
threshold on an infinite asymptotic range (s51/2). A rela-
tively still poor sampling over disorder is largely responsib
of some oscillations of the distribution, but the overall tre
appears already consistent with our theoretical prediction

With bulk disorder (D.0), the perturbative character o
Eqs.~5! prevents an exact control of the FPU for h→`. On
the other hand, we know that, withD.0, z052/3 is the
exact interface anisotropy index@1,4#. For zw,2/3, by set-
a
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ting z52/3 in Eqs.~5!, we find that bothK( l ) andD( l ) grow
proportional to exp(l/3) ~towards aT50 fixed point!, while
K8 andC grow slower, and are thus irrelevant. At the sam
time, for short-range forces,U( l )5U* exp(l/3) gives
U* (h)}h2t(z0), with t(z0)51, at largeh. Thus, in the limit
of very small bulk disorder, we get an indication that f
zw,2/3 a wetting transition regime identified byz5z0

52/3 should imply a decoupling of substrate fluctuatio
from the problem. At least with very weak bulk disorder, t
wetting transition withzw,2/3 should retain the features o
the flat wall case. For this case one indeed expects an e
tive wall-interface potential decaying ash21 @2,4#, and Kar-
dar has determined exactly by Bethe ansatz the second-o
character and the exponents of the transition@3#. Consis-
tently with our expectation, numerical results for short-ran
forces in Ref.@16# support continuous wetting in Kardar’
class forzw sufficiently lower than 2/3, even with finite bulk
disorder.

Let us consider now zw.2/3, and short-range
forces again. By settingz5zw in Eqs. ~5!, we find D( l )
5D(0)exp@(12zw)l#, while K( l )5K8( l )5C( l )
5K* exp@(2zw21)l# and Kw( l )5const. Furthermore,U( l )
5U* exp@(2zw21)l# implies U* (h)}h2t(zw). Since nowD
~still supposed small! grows slower thanK, C, andK8, it is
natural to regard it as an irrelevant parameter with respec
theT50 FP’s that would be reached forD50 strictly. Upon
varying zw.2/3, these FP’s span a subset of those alre
discussed with ordered bulk, for which quantum mechan
implies first-order wetting. Thus, we conclude that forzw
.2/3 a small amount of bulk disorder is irrelevant a
leaves the transition under the control of the same mec
nism outlined for pure bulk and the samezw . Numerical
results in Ref.@16# support this conclusion, giving evidenc
of first-order wetting for sufficiently largezw and finite dis-
order. Similar arguments apply to long-range forces in
and, forzw.z* , in the MF regime.

In summary, our RG picture demonstrates first-order w
ting in 2D with sufficiently rough substrates exerting sho
range forces on the interface. This is consistent with ear
numerical work suggestive of discontinuous transitio
@8,16#. The threshold for first-order wetting is precisely ide
tified aszw51/2 in the case of ordered bulk. For disorder
bulk perturbative arguments suggest first-order as soon
zw.2/3, consistent with a possible general rule thatz0 iden-
tifies the threshold. We predict roughness induced first-or
wetting also with long-range forces, forzw.z0.z* ~SF! or
for zw.z* .z0 ~MF!. Discontinuous depinning is due to th
repulsive effective wall-interface potential, which becom
too strong, at large distance, to allow for a continuous
crease towards infinity of̂h& when depinning is approached
This follows from general quantum properties, independ
of the details of U at finiteh.

Interesting open problems remain the nature of wett
right at the thresholds and the possible extension to 3D
this type of results, which rely on the connection with qua
tum mechanics in 1D. A recent mean feld study in 3D su
gests the possibility of first-order wetting induced by w
roughness with short-range substrate potential and ord
bulk @17#. Another interesting issue is whetherzw5z0 could
be a plausible threshold also in cases in which different ki
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of bulk disorder imply differentz0’s. Relevant examples in
clude random fields@4# and quasicristals@18#.

Due to the competition between two qualitatively simil
scaling geometries, interactions between a fluctuating m
fold and a random boundary can lead to interesting phen
ena also in other contexts. An example could be flux lines
high-Tc superconductors with extended rough defects@19#.
tt.
i-
-

n

Also of interest would be polymers or membranes adsor
by rough walls.

We thank M. Kardar for useful criticism and G. Giuglia
elli for ongoing collaboration. G.S. was supported by t
Stichting voor Fondamenteel Onderzoek der Materie. Pa
support from the European Network Contract No. ERBF
RXCT980183 is also acknowledged.
st

.
-

,

ns.
@1# G. Forgacs, R. Lipowsky and Th. M. Nieuwenhuizen, inPhase
Transitions and Critical PhenomenaVol. 14, edited by C.
Domb and J. L. Lebowitz~Academic Press, London, 1991!.

@2# R. Lipowsky and M. E. Fisher, Phys. Rev. Lett.56, 472
~1986!.

@3# M. Kardar, Phys. Rev. Lett.55, 2235~1985!.
@4# M. E. Fisher, J. Chem. Soc., Faraday Trans. 282, 1569~1986!.
@5# P. Pfeifer, Y. J. Wu, M. W. Cole, and J. Krim, Phys. Rev. Le

62, 1997~1989!; Phys. Rev. Lett.65, 663 ~1990!.
@6# M. Kardar and J. O. Indekeu, Europhys. Lett.12, 161 ~1990!;

Phys. Rev. Lett.65, 662 ~1990!.
@7# H. Li and M. Kardar, Phys. Rev. B42, 6546~1990!.
@8# G. Giugliarelli and A. L. Stella, Phys. Rev. E53, 5035~1996!.
@9# Th. M. Nieuwenhuizen, J. Phys. A21, L567 ~1988!.

@10# R. K. P. Zia, R. Lipowsky, and D. M. Kroll, Am. J. Phys.56,
160 ~1988!.

@11# Of course there are choices other than Eq.~1! giving the same
two-point height correlation. Our Gaussian form is the mo
simple, with all higher cumulants equal to 0.

@12# Thus,ln(Z)5limn→0(Zn21)/n.
@13# For z0,z* , a mean field~MF! regime is realized andU

}h2s11, with an amplitude growing under renormalization
@14# D. B. Abrahams, inPhase Transitions and Critical Phenom

ena, edited by C. Domb and J. L. Lebowitz~Academic Press,
London, 1986!, Vol. 10.

@15# In Eq. ~6! and from here on we use againh to indicateha

2hw .
@16# G. Sartoni, A. L. Stella, G. Giugliarelli, and M. R. D’ Orsogna

Europhys. Lett.39, 633 ~1997!.
@17# A. O. Parry, P. S. Swain, and J. A. Fox, J. Phys.: Conde

Matter 8, L659 ~1996!.
@18# R. Lipowsky and C. L. Henley, Phys. Rev. Lett.60, 2394

~1988!.
@19# L. Balents and M. Kardar, Phys. Rev. B49, 13 030~1994!.


