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First-order wetting of rough substrates and quantum unbinding
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Replica and functional renormalization group methods show that, with short-range substrate forces or in
strong fluctuation regimes, wetting of a self-affine rough wall in two dimensions turns first order as soon as the
wall roughness exponent exceeds the anisotropy index of bulk interface fluctuations. Different thresholds apply
with long-range forces in mean field regimes. For bond-disordered bulk, fixed point stability suggests similar
results, which ultimately rely on basic properties of quantum bound states with asymptotically power-law
repulsive potentiald.S1063-651X98)15309-9

PACS numbsg(s): 68.45.Gd, 05.70.Fh, 64.60.Ak, 82.65.Dp

Wetting transitions occur when, e.g., an interface separatever occurs in 2D, except in special aad hoclimit situ-
ing two coexisting phases unbinds from an attractive subations[9]. Disorder generally acts in the opposite sense of
strate, as the wetting temperatufg, is approached from turning into second-order discontinuous transitifhis In all
below. In recent literature, much space has been devoted &ses the mechanism leading to first-order wetting at large
the effects of different types of disorder on the nature andw can be traced back to some basic properties of quantum
universality of such transitiorfd—4]. This is motivated both bound states of a particle in a poten{iaD].
by the presence of impurities in actual experiments, and by In 2D, a self-affine wall can be described by a random
the expectation that disorder modifies critical behavior.functionh,(x) (Fig. 1), with probability distribution[7]
Many studies concentrated on impurities in the bulk, or on
the surface of a smooth substrate. Another type of disorder is K
that due to the roughness of the wall delimiting the substrate. PW[hW]ocex;{ - j deW(a‘”hW/axB)2 @
This rather frequent geometrical disorder was discussed es-
pecially in connection with measurements of nitrogen ad-
sorption on flash deposited silvEs—8]. _ such thathy,(x) — hy,(x')]<|x— x|, with £,,=B8—1/2 and
Substrate roughness describable by self-affine geometry {fe overbar indicating the quenched average with respect to
often realized and most interesting, from both a fundamental

and a physical point of view. Indeed, a wall whose average
transverse fluctuatiodV, increases as a power of the longi-
tudinal sample sizé (W, xL‘w,0<{,<1), has a random data
geometry characterized globally by a single roughness expo- fie
nent{,,. Moreover, whether their fluctuations are controlled
by temperature or by disorder, bulk interfaces behave as self- 0.03 |
affine objects, with appropriate exponetitd 1,4] describing
their transverse fluctuations just §g does in the case of
W, . Thus, when such substrates are considered, a direct
competition between wall and interface roughnesses may be
anticipated in wetting phenomena.

In the present paper we show exactly in two-dimensions
(2D) that, as soon as the wall wirge., for {,,> g with
short-range substrate potentjalthe above competition is
resolved in an unusual, drastic change of the wetting transi- 001 I
tion, from continuous to first order. In other terms, the aver-
age substrate-interface distance diverges discontinuously at
T,, rather than as a negative power if—T. We deter-
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mine exact roughness thresholds for first-order wetting also T ,
in other regimes with the subs.trate exerting _Iong—range 0 1000 2000 3000
forces(e.g., van der Waalon the interface and discuss, at h

perturbative level, cases with bond disorder in the bulk. A

change from continuous to discontinuous wetting is in fact a FIG. 1. Inset: sketch of the geometry of wétlontinuoug and
quite surprising and unexpected phenomenon, especially interface(dashedl Main: probability distribution oh, from a sam-
2D. As a rule, with short-range forces, first-order wettingpling of 500 wall configurations of 100 000 longitudinal steps.
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Eq. (1) [11]. In the presence of bulk disorder, the interface

Hamiltonian can be put in the form

« h/ox)?
E(& o0X)

BH[h,hW,V]zf dx

+U(h(X) —hy(x)+V(x,h(x))|  (2)

where V is a Gaussian random potentialV
=0, V(x,h)V(x',h")=A8(x—x")é(h—h")], andU is the
potential due to the substraté.is the interfacial stiffness. If
the wall is attractive, but impenetrablg(y)=c for y<O0,
and a minimum ofU at somey>0 allows us to pin the
interface.  With long-range forces, U(y)~u/y’ !
+vly? (v>0), for largey [4].

The disorder due th,, andV in Eq. (2) makes the parti-
tion Z[h,,,V]=[Dhexp(—BH) a stochastic variable. Thus,
we introduce replicagl2] and evaluate

Z"= f DV f DhyP,[V]IPu[hul f[l Dh,,

Xexp(—BH[h,,hy,,V]) (3
where InP,)=const-(1/2A) f dx dh (x,h)?. Integration
overDV is easily performed and allows to interpref(x) as
world lines (x corresponding to timeof n quantum particles
interacting via attractive two-bod§ potentials. Thus, in Eq.
(3) we are left with integrations ovePh,, andDh,, and an
effective Hamiltonian:

,BH[ha,hW]=f dx(%(ﬁﬁhwlﬁxﬁ)2

!

K K
+> {E(aha/ax)%?(ahwlax)z

+C (3 19%) (3 19%) + U(ha)}

+A D 5(ha—hﬂ)>. (4)
a#t B

The logarithm ofP,, is now included inBH and the cou-
plings K’ and C arise from the replacemett,—h_,+h,
(initially, of course,K’=C=K). A functional renormaliza-
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5)
din(C)
—ar {+iw—1,
din(Ky)
=1-28+2¢,=0,
dl
din(A)
T:l_ ,

where(} is a suitable function oK, K,,, C and the cutoffA
[7], andh stands for a generik,, .

We first discussA =0. With ¢,<1/2 and ordered bulk,
for {=¢,=1/2[1,4], there exists a fixed poinFP) of Egs.

(5), with respect to whichK’ and C are irrelevant
[dIn(K)/dI=0, while, e.g.,dIn(K")/dI<0]. Thus, substrate
fluctuations decouple from the problem. With short-range, or
with long-range forces such thafy=1/2>2/(oc+1)={*
{strong fluctuation(SP regime[4]}, the FP behavior of) at
largeh is within the control of a first-order cumulant expan-
sion and turns out to b&loch™ 70 (7(£o)=2(1— o)/ &

=2) [4,7,13. This long distance behavior should in fact ap-
ply to all of the FPU’s necessary to describe the wetting
transition in such conditions. These FP’s are in general three:
one describing pinned interface situations, one for the wet
regime with unbound interface, and one, unstable, at the bor-
derline between the domains of attraction of the previous
two, describing the transition point behavior. In view of the
decoupling of substrate fluctuations, the wetting transition
controlled by these FP’s, who&Es we can not determine at
finite h, is expected to be continuous, with exponents iden-
tical to those valid for the flat wall, which are known exactly
[1,14]. In the case of short-range forces, numerical evidence
of second-order wetting with such exponents has been re-
cently obtained for low enougly, by extensive transfer ma-
trix calculations[8].

The FP’s for{,,>1/2 have to be found &t=0, by setting
{=¢, in Egs.(5). Indeed, now, choosing agaif+ 1/2, pa-
rameters likeK’ and C would grow to infinity whileK re-
mains fixed. Surface roughness is clearly relevant now. Un-
der a rescalindy, a T=0 fixed point is approached g&H
chY(BH)* with (BH)* finite andy>0, whenb—~. Such
FP’s are expected in situations when quenched disdchier
to the wall herg controls the physic§7]. At the T=0 FP’s
with {=¢,,, K, K’, andC are all growing to infinity at the
same rate {e.g., K(I)~K*exd(2Z,—1I]}, and U(l)

tion group(RG) [1,7] treatment can be performed exactly up ~U* (h)exd (24,—1)I]. U* obeys an equation like the first

to first order inU and A. By summing up exp{8H) over

Fourier moded,,(k) andh,,(k) with A/b<k<A, after the
rescalingsx—bx, h,—b’h, andh,—b*h,,, one obtains
the following RG flow equationsh(=1+dl):

dinu) U U
ar trehg ey

dIn(K)

dl '

of Egs. (5), with the constant term replaced by 2(Z%,),
and¢,, multiplying the second term on the right-hand side in
place of{. Thus, the discussion of the asymptotic behavior
of U* follows lines similar to those fotJ in the casef,,
<1/2[7]. In particular, with short-range forces or in SF re-
gime, we get nowJ* (h)ech™ "W [7(¢,)<2]. Such be-
havior of U* holds also in MF regime{* > {,=1/2[4]), as
soon asf,, > ¢*.

This asymptotic behavior dff* and the connection be-
tween path integral and quantum mechanics are the key to
demonstrate first-order wetting. Indeed, the transition order
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is revealed by the way in whickh) diverges to infinity. ting {=2/3 in Egs.(5), we find that bottK(l) andA(l) grow
Consistently with Eqs(5), upon approaching@=0 FP with  proportional to exg(3) (towards aT=0 fixed poin}, while

Lw> Lo, OF {y>C* in the MF regime, we must defing,,* K’ andC grow slower, and are thus irrelevant. At the same
such thatk,,(I) =K, * exd2{,—1)l]=const. Thus, in the FP time, for short-range forces,U(l)=U*exp(/3) gives
action (BH)* we are left withK}, =0, asl—c. By shifting ~ U*(h)«ch™ 70 with 7({,)=1, at largeh. Thus, in the limit
back integration variables in this actioh (—h,—h,), the  of very small bulk disorder, we get an indication that for
terms inK’* andC* disappear and the calculation®t can  ¢,<2/3 a wetting transition regime identified b§=¢,

be easily converted into that of the ground state energy of & 2/3 should imply a decoupling of substrate fluctuations
quantum problem in 1D, witm+1 particles and Hamil- from the problem. At least with very weak bulk disorder, the
tonianH="= [ p2/(2K*)+U(h,—h,,)]. In this problem the  wetting transition withZ,,<2/3 should retain the features of
particle with coordinaté,, has an infinite mass. This circum- the flat wall case. For this case one indeed expects an effec-
stance allows to get the ground state wave functiorof tive wall-interface potential decaying &s* [2,4], and Kar-
exactly in the formIl,W(h,—hy), with ¥ satisfying the  dar has determined exactly by Bethe ansatz the second-order
one-particle Schidinger equation: character and the exponents of the transiti8h Consis-
tently with our expectation, numerical results for short-range
forces in Ref.[16] support continuous wetting in Kardar's

T oK* PUIP+U* W =€V ®  class forg,, sufficiently lower than 2/3, even with finite bulk
disorder.
(h,—hy) is proportional to the expectation valyé,) [15], Let us consider now {,>2/3, and short-range
of h in the ground statel'(h) of Eq. (6). We concluded forces again. By setting=¢,, in Egs. (5), we find A(l)
above that, at largk and for¢,,>1/2 (or {,>¢* >1/2 with  =A(0)exd(1—)!], while K(=K"(I)=C(l)
long range forces in the MF regimethe possibleU* (h), =K*exd(24,—1)] and K, (I)=const. FurthermoreJ(l)

however, behaving at finita, are repulsive and decay as- =U*exg(2,—1)I] implies U* (h)ch™ "éw). Since nowA
ymptotically to zero with a power({,)<2 of h. The FP  (still supposed smaligrows slower thaik, C, andK’, it is
U* at the wetting transition must have such a shape to benatural to regard it as an irrelevant parameter with respect to
long to the borderline class between potentials with boundhe T=0 FP’s that would be reached far=0 strictly. Upon
ground state an@&<O0, and potentials for which all states varying Z,,>2/3, these FP’s span a subset of those already
havee>0 and(h)y=. These two latter types of potentials discussed with ordered bulk, for which quantum mechanics
characterize dry and wet regimes, respectively. Independefrplies first-order wetting. Thus, we conclude that fy
of the details ofU* (h) at shorth, a solution of Eq(6) with >2/3 a small amount of bulk disorder is irrelevant and
€=0 has a remarkable property fer2 [10]. Indeed, are  |eaves the transition under the control of the same mecha-
=0 eigenstate necessarily behaveslgdh)=exp(—ah’), at  nism outlined for pure bulk and the sanfg. Numerical
largeh, with s=1—(7/2)>0. This means that, foe=0, a  results in Ref[16] support this conclusion, giving evidence
repulsive potential decaying slower than? creates a too of first-order wetting for sufficiently largé,, and finite dis-
strong barrier at large distances to allow interface delocalizasrder. Similar arguments apply to long-range forces in SF
tion. Thus, the ground state for U* representing the tran- and, for{,>¢*, in the MF regime.
sition FP(i.e., a FP potential in the borderline classust be In summary, our RG picture demonstrates first-order wet-
bound, with(h)y <. This implies that, right at the wetting ting in 2D with sufficiently rough substrates exerting short-
transition,(h)< e, while (h) = as soon as the wet phase is range forces on the interface. This is consistent with earlier
accessed. First-order wetting is thus proved as soofi,as numerical work suggestive of discontinuous transitions
>1/2 (short range o€* <1/2), or{,>*>1/2. [8,16]. The threshold for first-order wetting is precisely iden-
A recent numerical study of a 2D model with rough sub-tified as¢,,= 1/2 in the case of ordered bulk. For disordered
strate exerting short-range forces, gave evidence in suppapulk perturbative arguments suggest first-order as soon as
of first-order wetting forZ,, sufficiently larger than 1/28].  {,,>2/3, consistent with a possible general rule tfaiden-
In order to get a more direct manifestation of the mechadifies the threshold. We predict roughness induced first-order
nisms implied by Eq(6), we performed transfer matrix cal- wetting also with long-range forces, fdy,> (o> ¢* (SH or
culations for a model on square lattice with both the wall andor ¢,,> {* > ¢, (MF). Discontinuous depinning is due to the
interface represented by directed paths, as described in Re®pulsive effective wall-interface potential, which becomes
[16]. Figure 1 reports numerical results for the probabilitytoo strong, at large distance, to allow for a continuous in-
distribution of h. Data are taken just below the depinning crease towards infinity gth) when depinning is approached.
temperature fot,,=2/3 [ 7(2/3)=1]. The dotted curve has This follows from general quantum properties, independent
a behavior xexp(—ax'?), of the form expected right at of the details of U at finiten.
threshold on an infinite asymptotic range=(1/2). A rela- Interesting open problems remain the nature of wetting
tively still poor sampling over disorder is largely responsibleright at the thresholds and the possible extension to 3D of
of some oscillations of the distribution, but the overall trendthis type of results, which rely on the connection with quan-
appears already consistent with our theoretical predictions.tum mechanics in 1D. A recent mean feld study in 3D sug-
With bulk disorder A>0), the perturbative character of gests the possibility of first-order wetting induced by wall
Egs.(5) prevents an exact control of the EPfor h—c. On  roughness with short-range substrate potential and ordered
the other hand, we know that, with>0, {,=2/3 is the bulk [17]. Another interesting issue is whethgf= ¢, could
exact interface anisotropy ind¢g,4]. For £,<2/3, by set- be a plausible threshold also in cases in which different kinds



2082 ATTILIO L. STELLA AND GIOVANNI SARTONI PRE 58

of bulk disorder imply differenty’s. Relevant examples in- Also of interest would be polymers or membranes adsorbed
clude random field$4] and quasicristalf18]. by rough walls.

Due to the competition between two qualitatively similar - \ye thank M. Kardar for useful criticism and G. Giugliar-
scaling geometries, interactions between a fluctuating mani|i for ongoing collaboration. G.S. was supported by the
fold and a random boundary can lead to interesting phenonstichting voor Fondamenteel Onderzoek der Materie. Partial
ena also in other contexts. An example could be flux lines irsupport from the European Network Contract No. ERBFM-
high-T. superconductors with extended rough defdd]. RXCT980183 is also acknowledged.

[1] G. Forgacs, R. Lipowsky and Th. M. NieuwenhuizenPimase two-point height correlation. Our Gaussian form is the most
Transitions and Critical Phenomensol. 14, edited by C. simple, with all higher cumulants equal to O.
Domb and J. L. LebowitZAcademic Press, London, 1991 [12] Thus,@ﬂimn_‘o(?—l)/n.

[2] R. Lipowsky and M. E. Fisher, Phys. Rev. Lefif, 472 [13] For {p<{*, a mean field(MF) regime is realized andJ

(1986. «h™o*1 with an amplitude growing under renormalization.
[3] M. Kardar, Phys. Rev. Letb5, 2235(1985. [14] D. B. Abrahams, inPhase Transitions and Critical Phenom-
[4] M. E. Fisher, J. Chem. Soc., Faraday Tran8221569(1986. ena edited by C. Domb and J. L. LebowitAcademic Press,
[5] P. Pfeifer, Y. J. Wu, M. W. Cole, and J. Krim, Phys. Rev. Lett. London, 1986, Vol. 10.

62, 1997(1989; Phys. Rev. Lett65, 663 (1990. [15] In Eq. (6) and from here on we use againto indicateh,
[6] M. Kardar and J. O. Indekeu, Europhys. LétP, 161 (1990); —hy,.

Phys. Rev. Lett65, 662 (1990. [16] G. Sartoni, A. L. Stella, G. Giugliarelli, and M. R. D’ Orsogna,
[7] H. Li and M. Kardar, Phys. Rev. B2, 6546(1990. Europhys. Lett39, 633(1997.

[8] G. Giugliarelli and A. L. Stella, Phys. Rev. &3, 5035(1996. [17] A. O. Parry, P. S. Swain, and J. A. Fox, J. Phys.: Condens.
[9] Th. M. Nieuwenhuizen, J. Phys. &1, L567 (1988. Matter 8, L659 (1996).
[10] R. K. P. Zia, R. Lipowsky, and D. M. Kroll, Am. J. Phy5§, [18] R. Lipowsky and C. L. Henley, Phys. Rev. LeB0, 2394

160 (1988. (1988.

[11] Of course there are choices other than @9.giving the same  [19] L. Balents and M. Kardar, Phys. Rev.48, 13 030(1994.



